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The use of the standard approaches for evaluating a neoclassical radial electric field Er, i.e., the Ampere (or gyro-

Poisson) equation, requires accurate calculation of the difference between the gyroaveraged electron and ion particle fluxes 

(or densities). In the core of a tokamak, the nontrivial difference appears only in high-order corrections to a local 

Maxwellian distribution due to the intrinsic ambipolarity of particle transport. The evaluation of such high-order corrections 

may be inconsistent with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing 

limitations on the applicability of the standard approaches. However, in the edge of a tokamak, charge-exchange collisions 

with neutrals and prompt ion orbit losses can drive non-intrinsically-ambipolar particle fluxes for which a nontrivial (Er-

dependent) difference between the electron and ion fluxes appears already in a low order and can be accurately predicted by 

the long wavelength GKE. The parameter regimes where the radial electric field dynamics in the tokamak edge region is 

dominated by the non-intrinsically-ambipolar processes, thus allowing for the use of the standard approaches, are discussed. 

Introduction.–It has been recently been demonstrated that the use of the standard approaches 

(i.e., the gyro-Poisson, or flux-surface-averaged Ampere equation) that are utilized in the majority of 

drift-kinetic and gyro-kinetic codes for evaluating a long-wavelength axisymmetric neoclassical radial 

electric field Er has limited validity in the core of a tokamak [1-2]. Briefly, the limitation comes from 

the fact that a difference between the ion and the electron flux-surface-averaged particle fluxes (that 

determines the radial electric field) appears only in high-order corrections to a local Maxwellian 

distribution (zero-order solution), whereas the standard drift-kinetic equation [3] or the long 

wavelength gyro-kinetic equation [4], may have insufficient accuracy to predict such high-order 

corrections. The low-order identity between the electron and ion fluxes for an arbitrary value of the 

radial electric field is a manifestation of the so-called intrinsic ambipolarity [5]. In the tokamak edge, 

however, charge-exchange collisions with neutrals [6-7] and ion orbit losses [8] can drive non-

intrinsically-ambipolar particle fluxes, for which a nontrivial (Er-dependent) difference between the 

electron and ion fluxes appears already in the low-order corrections (accurately predicted by the long 

wavelength GKE). Therefore, for the parameter regimes where the non-intrinsically-ambipolar 

processes play a dominant role in determining the Er-dynamics, or, equivalently, the non-intrinsically-

ambipolar (low-order) particle fluxes are dominant over the intrinsically-ambipolar (high-order) 

particle fluxes, the standard approaches for evaluating Er can be used. While both the charge-exchange 



collisions with neutrals and ion orbit losses are significant near the last closed flux surface (separatrix), 

their influence rapidly decreases toward the core region. Indeed, the neutral density exhibits an 

exponential decay due to ionization, and the ion orbit loss decreases due to the shift of the loss cone 

toward the high-energy tail of the particle distribution. On the other hand, the higher-order ambipolar 

particle losses are generally small, and it is therefore of particular interest to estimate the radial width 

of an edge layer where the non-intrinsically-ambipolar losses are still dominant.  

This note is organized as follows. First, following the discussion in Ref. [2], we assess the 

higher-order “intrinsically ambipolar” particle fluxes, and review the limitations of the standard 

approaches for evaluating a neoclassical radial electric field in a tokamak core. We then estimate the 

non-intrinsically-ambipolar fluxes driven by the charge-exchange collisions with neutrals and the orbit 

ion losses, and evaluate the width of the layer in the edge where the standard approaches can be used.  

Limitations of the standard approaches in a tokamak core.–In order to understand the 

limitations of the standard approaches for evaluating a neoclassical radial electric field in a tokamak 

core, it is first important to discuss the accuracy of the standard “first-order” gyrokinetic equation [4]   
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Here, Eq. (1) for the ion gyrocenter distribution function f(R, v||, µ) is written in parallel velocity (v||) – 

magnetic moment (µ) coordinates, dvbR += ||v! , ( ) ( )BZemi RRR ∇+Φ∇⋅−= µ!! |||| v1v , vd is the drift 

velocity composed of the E×B drift and the magnetic drifts (i.e., curvature drift and B∇ drift), R is the 

gyrocenter position coordinate, [ ]fC  denotes the gyro-averaged collision operator, B=B·b is the 

magnetic field with b denoting the unit vector along the field, e is the electron charge, and Z and mi 

correspond to the ion charge state and mass, respectively. For the case of the long-wavelength 

neoclassical electrostatic potential variations with eφ~T and 1~ <<⊥ pii Lk ρρ , the gyrokinetic 

electrostatic potential in Eq. (1) is given by ( )( )22 2 ϕρϕ ⊥∇+=Φ ii Te , where ρi is the ion gyroradius, 

the bar over a variable denotes the gyro-average, 1−
⊥k  and pL  describe the length scale for variations of 

neoclassical electrostatic potential and plasma pressure, respectively, and, finally, ion and electron 

temperatures of the same order are assumed, i.e., Ti~Te~T. 

 The accuracy of Eq. (1) can be characterized by three dimensionless parameters: 

1~ <<BiB Lρδ  corresponding to the accuracy of the magnetic drift velocity, 1~ <<pip Lqρδ  

describing the effects of finite drift-orbit width, and ( )( ) 1~ <<⊥ iE kTe ρϕδ  describing the finite 



Larmor radius (FLR) polarization effects. Here, BL  is the characteristic length scale for variation of the 

magnetic field, typically being the order of the tokamak major radius, i.e., RLB ~ , and q  is the 

magnetic safety factor.  Assuming the pressure length scale to be the order of the tokamak minor 

radius, aLp ~  (characteristic of a tokamak core region), the small parameters are related as 

qEp ~δδ and ϕθδδ BBpB ~ , where Bθ and Bφ denote the poloidal and toroidal components of the 

magnetic field, respectively. For the case of a large aspect ratio tokamak with 1<<= Raε  and 1~q  

it follows that 1~Ep δδ  and 1<<pB δδ . In the opposite limit of a spherical torus with Ra ~  one 

obtains EpB δδδ ~~ . While the standard gyro-kinetic equation [Eq. (1)] describes the finite-orbit-

width effect to any order in pδ , it takes into account only the first-order corrections to the magnetic 

drifts and therefore is accurate only through the first order in δB. Furthermore, the majority of present 

numerical codes do not provide accurate implementation of the gyro-averaged collision operator 

through order 3
Eδ , and therefore here we assume that Eq. (1) is only accurate through the second order 

in δE. [It is also interesting to discuss the accuracy of Eq. (1) in the collisionless limit. First, we note 

that Eq. (1) and the subsidiary relations that follow do not include fourth-order FLR corrections, and 

therefore Eq. (1) cannot predict f to fourth order in 4
Eδ . Also, for the case of turbulent perturbations 

with eφ/T<<1 and 1~ik ρ⊥ , Eq. (1) also fails to predict 3
Eδ  corrections. It is however intuitively 

appealing to assume for the case of the neoclassical electric field with eφ/T~1 and 1<<⊥ ik ρ  that the 

collisionless limit of Eq. (1) is accurate through order 3
Eδ . The detailed analysis of this subject is, 

however, outside the scope of the present work.]  

For the case where the characteristic “radial” (i.e., normal to the magnetic flux surfaces) length-

scales for variations of the ion temperature, LT, and density, Ln, are large compared to the ion orbital 

excursion, a solution to the gyrokinetic equation (1) is close to a local Maxwellian distribution, FM. 

Assuming, LT~Ln~Lp and δE~δp, it is straightforward to show for moderate (plateau) or weakly 

(banana) collisional regimes that  

( ) M
n
pn FOf δ= ,                                                             (2) 

where fn is the nth-order correction to the local Maxwellian (zero-order) solution of Eq. (1), i.e., 

f=FM+f1+f2+… . However, if the second-order effects in δB were properly retained, the corrections to 

the zeroth-order Maxwellian solution would include the following missing terms 

( ) MBp
miss FOf δδ=2 ,                                                         (3a) 



( ) ( ) ( ){ } MEBpBp
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Therefore, a solution to Eq. (1) that only includes the corrections given in Eq. (2) is accurate through 

second order, (i.e., missff 22 >> ), if Bp δδ >> . For instance, in the core of a spherical torus with 

ε=a/R~1, we obtain Bp δδ ~ , and therefore already the second-order correction cannot be accurately 

evaluated. On the other hand, at the top of the pedestal of the DIII-D tokamak [9] corresponding to 

ε~0.3, q~4, B~1.8 T, Lp~a~0.5 m, Ti ~ 400 eV, mi=2mp we obtain δB~10-3, δp~10-2, implying that 

although the second-order correction, f2, can be accurately evaluated, the omitted second-order 

correction, missf 2  [Eq. 3(a)] is still larger than the third-order correction 3f  (in Eq. 2) predicted by Eq. 

(1). Here, mp denotes the proton mass. Furthermore, the adopted assumption of δp~δE in our analysis 

implies that 33 ~ ff miss .  

 The limited applicability of the standard approaches [e.g., e.g., gyro-Poisson or the flux-

surface-averaged Ampere equations]  for the evaluation of the neoclassical radial electric field now 

comes from the fact that a distribution function needs to be accurately known through third order. 

Indeed, let us consider the standard flux-surface-averaged Ampere equation for long-wavelength 

variations of the electrostatic potential Φ that is often used in numerical simulations for evaluating a 

radial electric field [10]  
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Here, ( ) ( ) ( )µµπ ,,v2 ||||
*
|| vfddBmn ii RR ∫=  is the ion gyro-density, ψ is the poloidal flux function, and 

the angular brackets <…> denote the flux surface average. The second term on the left-hand-side 

(LHS) of Eq. (4) corresponds to the classical polarization current density, with 4πnimic2/B2>>1 for a 

typical tokamak plasma, and the right-hand-side (RHS) of Eq. (4) represents the neoclassical ion 

current,  

( ) ( )∫∫ ∇⋅=∇⋅=Γ fddB
m

fd d
i

di ψµ
π

ψ vv ||
*
||

3 v2v ,                             (5) 

where ( )( )bBb ×∇+⋅≡ eZmB αα ||
*
|| v  is the Jacobian of the transformation from particle phase-space 

coordinates to the gyrokinetic variables. Note that the small neoclassical radial electron particle flux 

( ) θθ ρνρν RBnmmnRBn iiieiiiieeie ∇∇Γ 2212 ~~  is cancelled by the radial ion flux driven by the ion-

electron collisions [5], and therefore is not included in Eq. (4). Here, νei and νii are the electron-ion and 

ion-ion collision frequencies. For consistency, the collision operator in Eq. (1) should not include weak 



ion-electron collisions. The radial electron current driven by the electron-electron collisions is much 

smaller than the corresponding ion current, and is neglected in Eq. (4) as well. Finally, Eq. (4) provides 

no information about the small, O(δp), poloidal variations of the neoclassical electrostatic potential. 

These poloidal variations can be determined separately, for instance, by making use of the quasi-

neutrality condition along the magnetic field lines, which only requires accurate evaluation of  f1.  

It is straightforward to show for a steady-state case (or, during slow, transport-time-scale 

evolution) that the ion particle flux in Eq. (5) generated by the first-order correction, f1 [in Eq. (2)], 

vanishes [11],  
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due to the momentum-conserving property of ion-ion collisions. Here, I=RBφ and Ωi=ZeB/mic is the 

ion cyclotron frequency. Also, for an up-down symmetric tokamak, the second-order correction, f2 [in 

Eq. (2)], produces zero particle flux as well, i.e., ( ) 0v 2
3

2 =∇⋅=Γ ∫ fd d ψv  [2, 12]. Therefore, an 

accurate calculation of the third-order correction, f3, is required to obtain a nontrivial particle flux <Γ3> 

and describe the radial electric field evolution [Eq. (4)], which can however be inconsistent with the 

accuracy of Eq. (1).  

It is now important to estimate corrections to the ion particle flux that would be provided by the 

missing terms missf 2   and missf3  [in Eqs. 3(a) and 3(b)]. First, we note that the missing corrections in f2, 

i.e., missf 2 , [Eq. 3(a)] would not generate a nontrivial particle flux, even if properly retained. It follows 

from the well-established fact demonstrated in both fluid [13] and kinetic [12] theories that for an up-

down-symmetric tokamak the relaxation of the toroidal angular momentum occurs on the transport 

time scale, O(δ2ωt). Here, ωt=VT/qR is the transit frequency, VT is the ion thermal velocity, and δ~δp~δB 

is assumed for simplicity along with ωt~νii, where νii denotes the ion-ion collision frequency. From 

radial force balance one readily obtains the same-order relaxation time for the radial electric field, 

which [by virtue of Eq. (4)] requires that <Γi> be fourth order, so the exact <Γ2> (evaluated with 
missff 22 + ) must be zero. Therefore, only the omitted corrections in f3, i.e., missf3 , would generate 

nontrivial contributions to the ion particle flux. Assuming BEp δδδ ≥~ , it follows that <Γ3> misses 

the contributions, which are comparable to the one retained and can be estimated as  

θδδ
ω
ν

RBVn TiPB
t

ii 3
3 ~Γ .                                                   (7) 



Here, θψ RB~∇  and TBd Vδ~v  is used, and the coefficient tii ων  comes from the subsidiary 

expansion in collision frequency assuming weak collisionality regimes tii ων <<  typical of a tokamak 

core. That is, the first order correction, f1=O(δp)FM, should be considered as 

( )[ ] Mtiitiip FOf ...1 22
1 +++= ωνωνδ , where the lowest-order (collisionless) contribution does not 

contribute to the particle flux.  

 We now discuss another standard approach for evaluating Er in neoclassical simulations, which 

utilizes the long wavelength limit, 1<<⊥ ik ρ , of the gyro-Poisson equation [14] 
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with a Boltzmann (in the linear limit, adiabatic) model for electrons,  
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where ( ) ( ) ( )µµπ ,,v2 ||||
*
|| vfddBmnn iii RR ∫==  is the ion gyro-density and ni0=ni(t=0). Note that 

although the ion gyro-density, ni, is Eqs. (8)-(9) should formally be evaluated at the spatial coordinate 

x, and not the gyro-center coordinate R, a small difference of ( ) ( )[ ] ( ) iiiii nnkOnn <<=− ⊥
22ρxRx  can 

be neglected. Indeed retaining these corrections in Eqs. (8)-(9) yields 

( ) 0
22

0 iiiiii
ad
e nnkOnnnn −+−=− ⊥ρ , where the second term ( ) 0

22
iii nnkO −⊥ρ , related to the 

discrepancy between ni(x) and ni(R), is much smaller than the left-hand-side of Eq. (8). Applying flux 

surface averaging to Eq. (8), taking a time derivative and making use of the gyro-kinetic density 

moment equation (continuity equation), i.e.,  
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we obtain Ampere’s law [Eq. (4)]. Therefore, the limitations on the applicability of the gyro-Poisson 

equation [Eq. (8)] for evaluating Er in a tokamak core are the same as for Ampere’s law [Eq. (4)]. 

Physically, the approach utilizing gyro-Poisson’s equation relies on the accurate evaluation of <ni> 

evolution, which, in turn, is directly related to the accurate evaluation of <Γi>. It is straightforward to 

show that Ampere’s law [Eq. (4)] also follows from the gyro-Poisson equation for the case of kinetic 

electrons since the small radial electron and ion currents associated with the electron-ion collisions 

cancel each other [5], thus imposing the same applicability limitations for that case.  

 It is worth noting that methods for evaluating a radial electric field that require accurate 



evaluation of a distribution function only through order n=2 [2, 15], and even n=1 [12] are being 

developed as well. However, they are valid in limited parameter regimes, and are challenging for 

numerical implementation.  

Applicability of the standard approaches in a tokamak edge.– The edge of a tokamak is 

distinguished by the presence of non-intrinsically-ambipolar processes such as charge-exchange 

collisions with neutrals and prompt ion orbit losses. The ion particle flux driven by charge-exchange 

friction with neutrals can be estimated from Eq. (6) as follows 

( )ϕϕν niichx
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chx VVnR
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Ω
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3 ,                            (11) 

where [ ]nchx ffC ,  is the gyroaveraged operator for charge-exchange collisions, ( ) nchxchx nvσν = , nn  is 

the neutral density, ( )chxvσ is the charge-exchange reactivity, and Viφ and Vnφ are the toroidal ion and 

neutral flow velocities, respectively. It is evident that the Ampere or gyro-Poisson equations can be 

applied for evaluating the radial electric field in a tokamak edge region provided 3Γ>>Γchx . This 

condition needs to be satisfied as the system relaxes to a steady state, where, in the absence of other 

particle sources or sinks, <Γchx> becomes equal to <Γ3>. In order to estimate the friction force between 

ions and neutrals during the relaxation, one needs to take into account the dynamics of neutrals. 

Considering the flux-surface averaged toroidal angular momentum equation for the neutral species and 

neglecting the inertial term it follows for the axisymmetric case that  

( ) nniniaa RVVnmR Π⋅∇⋅=− ϕν ϕϕ ˆ ,                                                   (12) 

where, R is the major radius coordinate, Πn is the neutral viscous tensor, νni=νchx(nimi)/(nnmn) is the 

neutral-ion charge-exchange collision frequency, and mn is the neutral mass. For simplicity, here we 

estimate the right-hand-side of Eq. (12) as 2~ˆ nnnn lVRR ϕµϕ Π⋅∇⋅ , where nµ  is the neutral 

viscosity, Tn~Ti is the neutral temperature, and ln is the characteristic perpendicular length scale for 

variations of the neutral toroidal flow velocity, which is the order of or larger than that of the ion 

toroidal flow velocity, li. For a strongly collisional case with λn<<ln we adopt ninnn Tn νµ ~  and 

readily obtain from Eq. (12) that ( ) 1~ 22 <<− nnnni lVVV λϕϕϕ , where nnnin nT1~ −νλ is the neutral 

mean-free-path. It then follows that the ion and neutral velocities are approximately equal, Vnφ≈Viφ, 

ln≈li, and the particle flux in Eq. (11) is given by ( ) ( ) ϕλν iinnchxichx Vnlecm 22~Γ . More detailed 

analysis of the strongly collisional case can be found in Ref. [16]. In the opposite, weakly collisional 

limit, λn≥li, the neutrals cannot respond to rapid variations in the ion flow velocity. In this limit 



Tnnnnn Vlnm~µ , where VTn is the thermal neutral velocity, and we obtain from Eq. (12) that 

ϕϕϕ ini VVV ~− , assuming the ion flow velocity variations across the tokamak edge, ΔViφ, are the order 

of Viφ consistent with the experimental observations in Ref. [9]. The particle flux in a weakly-

collisional regime can therefore be estimated as ( ) ϕν iichxichx Vnecm~Γ . Adopting near-separatrix 

parameters characteristic of the DIII-D tokamak in the H-mode confinement regime [9], Ti~200 eV, 

ni~1019m-3, mn~mi, and assuming (σv)chx~3×1014 m3s-1 [6], it follows that λn~50 cm, which is the order 

of the distance between the divertor plates and the X point. The length scale for variations of the 

diamagnetic-size toroidal ion flow velocity is the order of several centimeters [9], and therefore this 

parameter regime corresponds to a weakly collisional case, with Viφ-Vnφ~Viφ. It now follows that the 

Ampere or gyro-Poisson equations can be applied for evaluating a radial electric field in a tokamak 

edge region provided  

( ) 2v
pB

t
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achx n
B
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δδ
ω
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θ
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,                                                       (13) 

where a diamagnetic level of the ion toroidal flow velocity, Viφ~δpVT, has been adopted. For the 

parameters of the DIII-D tokamak pedestal region [9], the inequality in Eq. (13) can be expressed as 

nn>>3×1012 m-3, where νii/ωt~0.1 was assumed. Note that while a typical neutral density can be as high 

as ~1019 m-3 at the divertor plates, it rapidly decreases toward the core region due to ionization [6-7]. 

Numerical studies show, however, that the condition in Eq. (13) can be well-satisfied even at the top of 

the pedestal [7].  

  We now discuss the effects of the non-intrinsically-ambipolar ion orbit losses [8-9, 17] shown 

in Fig. 1. Here, let us consider the electron and ion species being distributed initially according to local 

Maxwellian distributions with equal charge densities. Furthermore, we assume a weakly collisional 

regime with νii<<ε1/2ωt. As the system relaxation occurs, the ion orbit losses produce a large non-

intrinsically-ambipolar ion particle flux (the corresponding electron particle flux is much smaller), thus 

leading to the rapid generation of a radial electric field in accordance with Eq. (4) [or, Eq. (8)]. This 

electric field will, in turn, suppress the ion orbit losses by shifting them toward the high-energy tail of 

the ion distribution due to development of a potential barrier and Er-shear. It is important to note that if 

the <Γloss> dependence on the radial electric field is represented by a monotonically decreasing 

function, e.g., ( )critrcritloss EE−Γ=Γ exp , then, in the absence of other non-intrinsically ambipolar 

processes, the final steady-state value of the radial electric field can only be determined with limited 

(e.g., logarithmic) accuracy ( )3ln ΓΓ= critcritr EE . However, if other non-intrinsically ambipolar  



  

 

 

 

 

 

 

 

 
FIG. 1. Prompt ion orbit losses (simplified model). (a) Shown are the lost (solid red curve) and confined (dashed 
blue curve) ion trajectories corresponding w >wc and w <wc, respectively. The B∇ drift is assumed to be 
directed downward. (b) Schematic of a loss hole in the velocity phase-space corresponding to the outer 
midplane.  

 

processes are present, e.g., charge-exchange collision with neutrals, then the electric field can be 

accurately determined from the condition 0=Γ+Γ chxloss , provided 3, Γ>>ΓΓ chxloss . 

In order to evaluate the threshold in the condition <Γloss> >> <Γ3>, it is sufficient to estimate 

small suprathermal ion orbit losses from the flux surfaces corresponding to wc>>Ti (Fig. 1). Here wc(ψ) 

denotes a critical energy at which the particle’s banana orbit width, Λc(wc) becomes comparable to the 

distance between the flux surface under consideration, ψ, and the separatrix, i.e., 

 ( )
RBT

w
w sep
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c
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ψψ
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−
Λ ~~ ,                                              (14) 

where ρiθ=VTmic/(eBθ) is the ion thermal poloidal gyroradius. Note that in deriving Eq. (14) we 

neglected the effects of quasi-stationary Er on the suprathermal ion trajectories. Indeed, even for the 

case of the H-mode confinement regime, the potential variations Δφ~Ti/e that occur in the pedestal 

region with a characteristic length-scale of order ρiθ should not significantly affect the suprathermal ion 

dynamics. Also, for simplicity of the present calculations we assume that lost ion trajectories 

correspond to w>wc (Fig. 1). During the initial relaxation period [of the order of transient time scale, 

ictr mwqR21~ −ετ ] the collisionless orbit losses are primarily attributed to depletion of the initial 

particle distribution in the high-energy loss-hole regions of the ion phase-space. After this short initial 

stage, the losses are due to the slow collisional ion scattering into the loss holes. Note that the loss 

holes remain nearly empty provided ( ) ( ) ( )qRmww iccii
21εν << . Similarly to Eqs. (6) and (11), the 

particle flux associated with the ion orbit loss can be related during the quasi-stationary evolution of 
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the system to the corresponding sink of the flux-surface averaged toroidal angular momentum 

attributed to the collisional population of the suprathermal loss holes,    

( ) loss
loss

iloss nI !||v~ ΩΓ .                                                       (15)  

Here, ( ) 21|| ~v ic
loss mwε  is the parallel velocity of the lost ions and 

( ) ( )iciiciloss TwnwTn −exp~ 23 ν!   is the particle loss rate due to the scattering into the loss hole, where 

iiν  denotes the collision frequency corresponding to a thermal ion and the factor of ( ) 23
ci wT  comes 

from the energy dependence of the ion-ion collision frequency. Note that the losses from the outer 

midplane are used in Eq. (15) to represent the corresponding flux-surface averaged value. It is 

straightforward to show that ion orbit loss from that location is dominant for a given magnetic flux 

surface [9]. It now readily follows that 
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where we introduced the thermal banana orbit width θρε i=Λ0 . The non-intrinsically-ambipolar ion 

particle flux associated with the ion orbit losses [Eq. (16)] is dominant over the high-order flux in Eq. 

(7), within the region determined from  
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For the parameters characteristic of the DIII-D tokamak pedestal region [9], the threshold in the 

inequality in Eq. (16) corresponds to Λc = 3.5Λ0 = 4.2 cm.  

It is also interesting to discuss the initial collisionless ion losses that occur during the short 

transient time, ictr mwqR21~ −ετ , and become increasingly important in the proximity of the 

separatrix. Indeed, as the size of the loss-holes increases toward the separatrix, these prompt losses can 

become sufficiently large to generate a strong electrostatic potential barrier, Δφ≥Ti, so as to 

substantially suppress the losses. After the initial transient stage, the collisional losses will continue to 

determine the Er-dynamics. However, in the region of close proximity to separatrix, most of Er can still 

be attributed to the initial transient losses. In order to show that the initial transient losses can indeed 

produce significant electrostatic potential variations, we estimate the largest possible radial electric 

field, loss
trE , generated due to the collisionless ion losses, assuming that the loss holes are completely 

emptied out during the initial transient time period. Making use of Eq. (4), we obtain 

( ) ( ) ( ) ( )ΨΨΔΨ ANeEBncm loss
tr

loss
tri ~22 .                                        (18) 



Here,  ( ) ( ) ( ) ( )2022
00

1 exp~exp~ ΛΛ−ΛΛ−∇ΨΔ ∫
Ψ −

ccic
loss
tr nTwnAdN εεψψ  is the initial number 

of ions inside the loss-holes integrated over a plasma volume bounded by the magnetic flux Ψ, A(Ψ) is 

the area of the magnetic flux surface,  and we made use of  ( ) 212 ~exp x

x
exdtt −−∞

∫ −  for x>1. From Eq. 

(18) it now follows that the variation of the electrostatic potential within a single thermal-banana-

width, Λc~Λ0, layer (adjacent to the separatrix) is given by 1~ 2 >Δ εϕ qTe i . Therefore, the 

potential barrier can become strong enough to significantly suppress the ion losses and prevent a 

pronounced depletion of the initial ion distribution inside the loss-hole regions near the separatrix.  

Finally, we note that the ion orbit-loss process can, in principle, introduce large nonlinear 

perturbations to the edge of a tokamak. Therefore, the properties of the edge steady state can depend 

on the assumptions of the initial plasma distribution inside the loss-hole regions of the phase space. As 

an illustrative example, in the present work we adopt a local Maxwellian distribution to describe the 

initial state of the system, because it is often used in numerical simulations to initialize a tokamak 

edge.  

 Discussion.–The standard approaches [i.e., Eq. (4) or Eq. (8)] for evaluating a long-wavelength 

radial electric field can be applicable in a tokamak edge, where low-order non-intrinsically-ambipolar 

particle fluxes associated with the charge-exchange collisions with neutrals and prompt ion orbit losses 

are dominant over intrinsically ambipolar high-order fluxes (also present in a tokamak core). The non-

intrinsically-ambipolar fluxes are assessed, and the width of a layer inside the last closed flux surface 

where the standard approaches can be used is estimated. However, the aforementioned standard 

approaches have limited validity within the framework of standard gyrokinetics to evaluate the long-

wavelength radial electric field in the tokamak core.  

We also note that the problem of Er relaxation is closely related to the problem of plasma 

toroidal rotation. Indeed, the radial electric field and the ion toroidal velocity, Vφ, are directly related 

through radial force balance, and physically, the condition losschx ΓΓ<<Γ ,3  means that the 

relaxation of both Er and Vφ occurs on a time scale faster than the transport time scale. It also means 

that the relaxation of the toroidal angular momentum is dominated (over the neoclassical viscosity) by 

the torque provided by charge-exchange collisions [Eq. (11)] with neutrals or large orbit losses [Eq. 

(15)]. Accordingly, the applicability of the standard approaches can be numerically analyzed for a 

given simulation by diagnosing the time evolution of the flux-surface averaged gyrokinetic toroidal 

angular momentum, ( )∫= fBIddP ||||
*
|| vvB µϕ . The standard approaches can be used in the edge 



region of an up-down symmetric tokamak when the time evolution of Pφ (with a diamagnetic level of 

the toroidal flow velocity, Vφ~δpVT) occurs on a time scale shorter than 

( ) ( )( )( )[ ] ( )[ ] 121
3

1 ~~ −−−
ΓΩ= θϕθϕθϕϕ νδδτ BBqBBnRBVPP iipTpi

! , i.e. the transport time scale.  

Finally, we would like to emphasize that the present studies are performed for the case of 

axisymmetric particle transport. In order to generalize the analysis to including turbulent transport one 

needs to perform detailed studies to determine the order of the distribution function correction for 

which the difference between turbulent electron and ion particle fluxes becomes nontrivial (for an 

arbitrary value of the radial electric field). If the order is sufficiently high and is inconsistent with the 

accuracy of the gyrokinetic equation, then the conditions in Eqs. (13) and (17) need to be modified to 

include the maximum of the high-order (non-intrinsically ambipolar) turbulent and neoclassical 

particle fluxes. 
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